
Tutorial: Creating Load Tests in LoadNinja | 1

LoadNinja makes it easy to build load tests in a 

browser-based interface with no or minimal code. 

Before getting into test automation, let’s get started 

by recording a simple test, configuring the load test, 

and seeing how to read the results. We can then im-

plement this test scenario into Jenkins to automate 

the process.

Start by creating a new project:

1.	 Go to Projects and click Create Project.

2.	 In the dialog box, specify the project name              

and description.

3.	 Click Create.

Creating Load Tests 
in LoadNinja

Start Free Trial

If you don’t have an account already, 

you can sign up for a free trial to follow 

along or try it on your own application.

https://loadninja.com/free-trial/?utm_medium=resource&utm_source=ebook&utm_campaign=ln_ebk_manage-continuous-performance-tests-in-ci/cd


Tutorial: Creating Load Tests in LoadNinja | 2

The next step is creating a test script:

1.	 In the Project, click Record.

2.	 In the dialog, specify whether the application is 

Internal or External.

3.	 Specify the URL of the web page where the test 

will start and the desired screen resolution. 

Optionally, configure any advanced options.

4.	 Click Start Recording.

5.	 Interact with the web application in the same 

way that an end user would by clicking the links, 

entering text, or scrolling. You should be sure to 

use the same cadence as a typical user to mimic 

a realistic workflow. These steps will appear in 

the left sidebar as you go, where you can edit or 

remove them, as needed.

6.	 Click Stop.

7.	 Edit any of the steps in the left sidebar to fine-

tune the test.

Note: LoadNinja simulates script events using hard-

coded parameter values during the editing stage by 

default. However, you can use a databank (e.g. CSV or 

TXT file) to expand test coverage with more parameters. 

Simply upload the file and assign each column to the 

associated input. This lets you test multiple search 

queries, user logins, or other details to create broader 

test coverage than static hard-coded parameters.

LoadNinja also makes it easy to test client-side 

interactions and automatically handles encryption, 

authentication, authorization parameters, and 

many other complex scenarios. Since every test 

is recorded and replayed in a real browser, our 

platform automatically supports third-party 

frameworks like React, Angular, and HTML5. These 

are issues that can require significant extra scripting 

using protocol-based load testing platforms, such 

as JMeter or Gatling.

Next, create a scenario and run the load test to 
ensure that it runs properly:

1.	 Click on Save and Create a Load Test Scenario.

2.	 Define the number of concurrent users and 

test duration.

3.	 Optionally, click on More Config Options to 

configure different settings, such as the ramp-

up time or delay between iterations.

Finally, you can see the results and debug any issues:

1.	 The Scenario will show the status (e.g. running or 

finished) and the initial results.

2.	 The Charts tab provides accumulated results in a 

graphic form.

3.	 The Statistics tab provides the results of 

individual scripts in the scenario.

4.	 The VU Inspector tab lets you view desktops    

of remote cloud machines where virtual users 

are working.

5.	 The VU Debugger tab lets you see information 

on errors that occurred during the test run. The 

buttons on the right let developers dig deeper 

into each error.

The entire process is much more streamlined than 

using JMeter, Gatling, or other load testing tools 

that require a lot more scripting and configuring to 

properly measure modern applications. In addition, 

the results are much more accurate and actionable 

since they use real web browsers rather than 

measuring protocol level traffic.



Tutorial: Creating Load Tests in LoadNinja | 3

LoadNinja makes it easy to accomplish load tests 

in a fraction of the time that it would take with a 

conventional load testing platform. Fortunately, it’s 

just as easy to implement these load tests into a 

continuous integration environment, like Jenkins, 

that builds and tests software projects continuously 

after each commit or merge. That way, any new 

code changes that break the software are instantly 

identified and flagged before reaching production.

Start by downloading the LoadNinja plugin             

for Jenkins:

1.	 In Jenkins, go to Manage Jenkins and then           

Manage Plugins.

2.	 On the Available tab, type “LoadNinja” into the 

Filter field and check the box next to LoadNinja 

Load Testing Plugin when it appears.

3.	 Click Download now and install after restart or 

Install without restart.

Next, create a new Jenkins project:

1.	 Click on New Item in Jenkins to create a                

new project.

Executing on Load 
Test Automation

2.	 Enter the item name and select Freestyle Project 

and click OK.

3.	 Add a Build step on the following page and select 

the LoadNinja Plugin.

4.	 Input the LoadNinja apiKey and scenarioId. 

Optionally, set any pass criteria for test errors or 

step durations. The API key can be found in the 

LoadNinja User Settings, while the scenario ID 

can be found at the end of the scenario’s URL.

Note: You can also add LoadNinja as a build step in 

an existing project. For example, you may want to add     

performance testing to your functional test suite that 

runs before a merge to a production branch on git.

Finally, configure the test results:

1.	 Click on Add post-build action in the Post-build 

Actions section.

2.	 Select Publish JUnit test results report to receive 

an XML report. You can specify the name of the 

target file for the reports in the appropriate fields.

3.	 Click Save.



Tutorial: Creating Load Tests in LoadNinja | 4

Performance tests can be run at any stage of 

the development process. Since it’s resource 

intensive to run after each commit on a devel-

opment branch, most development teams run 

the tests before each merge with a production 

branch to ensure there are no bottlenecks. 

Jenkins makes it easy to automatically trigger 

tests through integration with git or using tokens, 

putting developers in control of when and how 

they run the test suite. 

If you’re not using Jenkins, LoadNinja provides 

a REST API for integrations with other contin-

uous integration platforms, such as CodeShip 

or CircleCI. 



Tutorial: Creating Load Tests in LoadNinja | 5

How to Read Load 
Test Reports

Most people limit the load testing to average 

response times, but there are many other metrics 

that are important to consider. For example, high 

error rates can degrade the user experience even 

if average response times are low. The number of 

concurrent users is also an important consideration 

since response times depend on the load. And 

finally, none of these metrics matter unless 

developers can identify and fix the bottleneck 

responsible.

LoadNinja focuses on four                       
key elements:

1 

Duration is the average duration for running each 

script and step. These numbers include both the 

time it takes to perform the actions, as well as the 

think time intervals that account for user behavior.

2

Navigation timings are the average time it takes to 

move between the website’s pages and locate and 

identify objects there. For example, you can see 

redirect time, DNS time, connect time, first byte time, 

response time, and DOM load time.

3

Error count is the number of errors for each script 

and step. These errors may include connection 

timeouts, missing elements, or validation failures for 

assertions that are created within LoadNinja.

4

Success rate is the number of successful iterations. 

In other words, the success rate is the percentage 

of steps within a script that pass successfully during 

the test run. 

You can also access the performance metrics for 

LoadNinja servers, which helps identify cases where 

the test infrastructure is the cause of errors that 

appear in the test results. You can also decide how 

many virtual users can be engaged in load tests 

since LoadNinja’s performance differs depending on 

the complexity of the load testing scripts.

Navigation timings are especially helpful because 

they can help pinpoint the true underlying 

bottleneck. For instance, you may notice that the 

DNS time for a particular step is taking a long time, 

which could suggest a problem with your DNS 



Tutorial: Creating Load Tests in LoadNinja | 6

provider rather than an underlying application issue. 

LoadNinja’s inclusion of DOM load times also sets 

it apart from other load testing platforms that only 

measures server requests and responses.

When it comes to continuous integration, it’s a 

good idea to set minimum thresholds for error 

rates or durations in order for the test suite to 

pass. You should also ensure that you’re testing 

with an appropriate number of virtual users for 

your expected loads. The goal is to identify any 

performance bottlenecks at expected peak loads, 

not crash the application under an unrealistic load 

that you don’t expect to see in production.

A key benefit of LoadNinja is the ability for develop-

ers to debug bottlenecks in real virtual browsers as 

they occur. The VU Debugger provides full access 

to the test page’s DOM via the document object in 

a JavaScript terminal. Developers can easily access 

web page elements in the same way as regular 

JavaScript on web pages. They can also view network 

traces to identify the source of issues that virtual 

users encounter.



Tutorial: Creating Load Tests in LoadNinja | 7

Managing Tests 
with Zephyr for Jira

Test automation is critical for software development 

teams that want to move at a high velocity and 

increase feedback while maintaining or optimizing 

quality. Over time, test suites can become unwieldy 

and difficult to manage, particularly for product 

owners that aren’t involved in the low-level creation 

and maintenance of tests. Test management solu-

tions can help ensure collaboration and traceability 

throughout the development lifecycle.

Zephyr for Jira is the most popular suite of test 

management tools for Jira designed to optimize the 

speed and quality of software testing, empowering 

teams with flexibility, visibility, and insights. From 

test plans to quality metrics, the platform makes it 

easy to keep everyone on the same page with test 

automation and integrations with popular continuous 

integration tools. You can even use advanced search 

queries with ZQL to find specific tests within a project.

It’s easy to integrate LoadNinja’s load tests with 

Zephyr for Jira and Jenkins to provide access to 

these collaboration tools and capabilities.

Start by downloading the Zephyr for Jira plugin      

for Jenkins:

1.	 In Jenkins, go to Manage Jenkins and then          

Manage Plugins.

2.	 On the Available tab, type “LoadNinja” into the 

Filter field and check the box next to Zephyr for 

Jira Plugin when it appears.

3.	 Click Download now and install after restart or 

Install without restart.



Tutorial: Creating Load Tests in LoadNinja | 8

Next, add the post-build action to Jenkins:

1.	 In Jenkins, navigate to the Item/Project and click 

Add Post-build Action.

2.	 Select Publish Test Results to Zephyr for Jira.

3.	 Add the Jira URL and Project Name.

4.	 Click Save.

In Zephyr for Jira, you can click on Tests to see the 

results of the tests. In Cycle Summary, you can see 

all of the previous tests that ran in the past and 

whether they passed or failed. Developers and 

stakeholders can log in to Zephyr for Jira at their 

own leisure to view these test results without test 

engineers having to send over reports to hold meet-

ings. Any problems can be easily converted into bug 

reports and flagged for follow-up.



Tutorial: Creating Load Tests in LoadNinja | 9

https://loadninja.com?utm_medium=resource&utm_source=ebook&utm_campaign=ln_ebk_manage-continuous-performance-tests-in-ci/cd

